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Solution to transient Navier–Stokes equations by the coupling
of differential quadrature time integration scheme with dual
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SUMMARY

The two-dimensional time-dependent Navier–Stokes equations in terms of the vorticity and the stream
function are solved numerically by using the coupling of the dual reciprocity boundary element method
(DRBEM) in space with the differential quadrature method (DQM) in time. In DRBEM application,
the convective and the time derivative terms in the vorticity transport equation are considered as the
nonhomogeneity in the equation and are approximated by radial basis functions. The solution to the
Poisson equation, which links stream function and vorticity with an initial vorticity guess, produces
velocity components in turn for the solution to vorticity transport equation. The DRBEM formulation of
the vorticity transport equation results in an initial value problem represented by a system of first-order
ordinary differential equations in time. When the DQM discretizes this system in time direction, we
obtain a system of linear algebraic equations, which gives the solution vector for vorticity at any required
time level. The procedure outlined here is also applied to solve the problem of two-dimensional natural
convection in a cavity by utilizing an iteration among the stream function, the vorticity transport and
the energy equations as well. The test problems include two-dimensional flow in a cavity when a force
is present, the lid-driven cavity and the natural convection in a square cavity. The numerical results are
visualized in terms of stream function, vorticity and temperature contours for several values of Reynolds
(Re) and Rayleigh (Ra) numbers. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution to the incompressible Navier–Stokes equations is the most significant area in compu-
tational fluid dynamics, which involves a wide range of applications in many branches of science
and engineering. Four alternative formulations of the Navier–Stokes equations are given earlier.
They are (i) the velocity–pressure formulation, (ii) the vorticity–stream function formulation, (iii)
the stream function fourth-order equation and (iv) the velocity–vorticity formulation. Although,
the velocity–pressure formulation gives the solution in terms of original primitive variables, for
two-dimensional and also for axi-symmetric flows it is convenient to use the vorticity–stream
function formulation where the equation of continuity is automatically satisfied and the number
of equations to be solved is reduced. Of course, the resulting system consists of two coupled
nonlinear equations. Aside from the fact that these coupled equations are nonlinear, there are
several other difficulties associated with their solution. A major difficulty arises from the boundary
conditions of the problem. In practice, only the velocity on the boundaries is prescribed, while for
the numerical solution to the equation in the vorticity–stream function formulation we require the
values of the vorticity on the boundaries as well. The advantage of using the velocity–pressure
formulation is that we are dealing with the variables that have physical significance. However,
in the velocity–pressure formulation it becomes necessary to solve a rather complicated pressure
equation, introducing additional difficulties. A third possibility is to solve the fourth-order formu-
lation of the Navier–Stokes equations. Although there is only one nonlinear equation that is to be
solved, it must be realized that one is now faced with a higher-order nonlinear equation. One of
the boundary conditions is given in terms of the normal derivatives, which also complicates the
numerical procedure. Velocity–vorticity formulations of the incompressible Navier–Stokes equa-
tions have similar advantages over velocity–pressure formulations as the reduction in the number
of equations to be solved through the elimination of the pressure. The problem of determining the
vorticity boundary conditions also exists. The velocity field in turn must be determined from the
vorticity field, which is the curl of the velocity field.

There are many studies on the numerical solutions to the Navier–Stokes equations in the
above-mentioned formulations by using the boundary element method (BEM). A boundary-domain
integral method is presented by Skerget and Rek [1] for solving Navier–Stokes equations in
velocity–vorticity formulation. The solution is obtained by using 40 boundary elements and 100
internal cells for Re up to 400. Later, Ramsak and Skerget [2] have used mixed boundary elements
in the same formulation of the Navier–Stokes equations. The subdomain-based BEM numerical
scheme is developed by Ramsak and Skerget [3] for modelling two-dimensional unsteady laminar
flow in stream function–vorticity form of the Navier–Stokes equations. Applications are on the
steady backward facing step flow and a periodic flow past a circular cylinder. These direct appli-
cations of the BEM to the Navier–stokes equations lead to domain integrals that can be evaluated
by using the cell integration approach. Although this method is effective and general, it makes the
BEM lose its boundary-only nature, resulting in a time-consuming numerical scheme. One of the
most popular methods to take the domain integrals to the boundary is the dual reciprocity method.
The dual reciprocity BEM (DRBEM) approximates the nonlinear or nonhomogeneous terms of
a partial differential equation as a series of vector-valued interpolation functions, and it yields a
particular solution to the problem, which can be used together with Green’s identity to convert
the domain integrals to boundary integrals. Sarler and Kuhn [4] applied DRBEM to transient
incompressible two-dimensional Navier–Stokes equations in primitive variables. As interpolation
functions, thin plate splines are used and all derivatives involved are calculated through integral
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representation formulas. The classical lid-driven cavity problem at Re=100 is solved. Later in
Sarler et al. [5] DRBEM with constant, linear and quadratic elements is applied to the solution
of a steady natural convection problem in porous media. The DRBEM is improved by using the
domain decomposition technique by Florez and Power [6] to solve the Navier–Stokes equations
at moderate Reynolds numbers. They introduce a radial basis function interpolation scheme for
the velocity field, which satisfies the continuity equation (mass conservative). The DRBEM is also
used by Rahaim and Kassab [7] for solving incompressible, laminar, viscous fluid flow and heat
transfer problems. The DRBEM with subdomain decomposition approach for two-dimensional
Navier–Stokes equations [8] and for two-dimensional thermal convection flow problems [9] is
utilized and the solutions are obtained for Reynolds number up to 600 and Rayleigh number up
to 104, respectively.

Ingber and Kempka [10] and Brown and Ingber [11] have used a vorticity formulation for the
analysis of incompressible viscous fluid flow problems with the driven-cavity benchmark problem
for Re 100 and 400, respectively. To more accurately satisfy both components of the velocity
boundary conditions, a Galerkin formulation is applied to the generalized Helmholtz decomposition
and vorticity equation is solved using a Galerkin finite element method where a parallelization is
utilized in their latter study. Ingber [12] extended this vorticity formulation to study the natural
convection flows in differentially heated enclosures.

Researches have also been carried out for solving viscous flows at high Reynolds numbers.
From these we can count the studies of Zhao and Liao [13] and Wu and Liao [14], which are
general BEM solutions in a driven cavity with Re values up to 7500. A parallel computation is
used in [13], whereas both parallelization and domain decomposition are used in [14] to reduce
the CPU time. There are some other numerical schemes used for solving Navier–Stokes equations
at high Reynolds numbers for lid-driven cavity problem and also for two-dimensional natural
convection flow in a square cavity. Sahin and Owens [15] described an implicit cell-vertex finite
volume method for the solution to the Navier–Stokes equations at high Reynolds numbers. They
eliminate the pressure term by multiplying the momentum equations with the unit normal to a
control boundary. They have used quite a fine mesh as 257×257 for increasing values of Re
number up to 10 000 for lid-driven cavity. The lid-driven cavity flow is also solved by parallel
lattice Boltzmann method using the multi-relaxation-time scheme by Wu and Shao [16]. Solution
is obtained for values of Re number up to 7500 by using 256×256 lattice points. Wong and Chan
[17] have given numerical verifications of the mixed finite element consistent splitting scheme
for solving Navier–Stokes equations in primitive variables. Their numerical simulation is for the
double lid-driven cavity by using fine mesh with 513×513 points for high Reynolds number. The
Navier–Stokes equations in stream function–vorticity formulation have been solved using a fine
uniform grid mesh of 601×601 for high Re number by Erturk et al. [18]. Sousa and Sobey [19]
have developed a global iteration matrix formulation for the stream function–vorticity equations for
examining the effect on numerical stability of boundary vorticity discretization. Two-dimensional
time-dependent incompressible Navier–Stokes equations in stream function–vorticity formulation
have been solved by uncoupling the variables linearizing the advective terms and using Euler-
type implicit time discretization by Ghadi et al. [20]. A numerical solution by using differential
quadrature method (DQM) has been developed by Lo et al. [21] for two-dimensional Navier–
Stokes equations in velocity–vorticity form and this numerical algorithm has been implemented
to study natural convection in a differentially heated cavity. For the time derivative, an iterative
second-order time stepping of finite difference type has been used. Ding et al. [22] also presented
a mesh-free finite difference scheme based on the use of a weighted least-square approximation

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:215–234
DOI: 10.1002/fld



218 C. BOZKAYA AND M. TEZER-SEZGIN

to solve two-dimensional natural convection in a square cavity. Moreover, the global method of
generalized differential quadrature has been applied to simulate the natural convection in a square
cavity by Shu and Xue [23]. In these two studies also iterative time integration schemes have
been used.

Most of the studies on the discretization of time derivative in the vorticity transport equation are
based on finite difference approximations. Erturk et al. [18] and Ingber and co-workers [10–12]
used an implicit Euler time scheme, which is first-order accurate; Skerget and Rek [1], Ramsak and
Skerget [3] used forward difference approximation for the time derivative of vorticity; and Wong
and Chan [17] used a fully implicit second-order backward differentiation formula since it is stable.
Kobayashi and Pereira [24] have chosen an explicit fourth-order accurate Runge–Kutta method for
solving the unsteady fourth-order stream function equation. It is known that the above-mentioned
methods need iterations with a proper choice of time increment �t for obtaining the solution at a
required time level. Since all the equations obtained from space discretization must be solved in
each iteration, the whole solution procedure is usually computationally expensive.

In this paper, we follow the stream function–vorticity formulation of the Navier–Stokes equations
and use the DRBEM treating the time derivatives and the nonlinear terms as the nonhomogeneity in
the vorticity transport and the energy equations. In the stream function equation the nonhomogeneity
is the previous value of vorticity and these three equations are solved iteratively. We obtain the
vorticity boundary conditions from the Taylor series expansion of stream function equation in terms
of boundary and interior stream function values. The approximations for the vorticity boundary
conditions affect the accuracy and convergence of the whole solution procedure. The formula we
use involves the unknown values of stream function at the distances ph and qh away from the
boundary (p and q are integers and h is the mesh distance). The DRBEM applications to vorticity
transport and energy equations result in systems of first-order initial value problems in time. We
have made use of the DQM in discretizing the time derivatives in these initial value problems
since it is known that DQM is unconditionally stable [25]. The DQM gives the solution at any
required time level at one stroke with a minimal number of discretized points between the initial
level and the required time level. By taking these results as initial values we solve the system
for obtaining the solution at another required time level. In this manner, we reach iteratively to
the steady state by solving the system in time blocks. These time blocks are discretized with
very small number of Gauss–Chebyshev–Lobatto (GCL) points since it is known that it gives
better accuracy than the use of equally spaced points [25]. The use of the DQM for the time
derivative has been used with success in solving transient convection–diffusion and unsteady MHD
equations [26, 27]. We extend this idea now for the solution to unsteady Navier–Stokes and energy
equations. Our solution procedure has been tested first on solving Navier–Stokes equations when
a force term is present for which an exact solution is available. Then, the lid-driven cavity and
natural convection cavity problems are solved for Reynolds number up to 1000 and Rayleigh
number up to 105, respectively. These two benchmark problems have attracted the attention of
many scientists in developing computational algorithms for solving the Navier–Stokes and energy
equations.

2. BASIC EQUATIONS

A two-dimensional laminar flow of an incompressible viscous fluid is governed by the
Navier–Stokes equations, which are given in the nondimensional form in terms of momentum
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equations:
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and the continuity equation:
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�y
=0 (2)

where u=u(x, y, t) and v=v(x, y, t) are the components of the velocity field, p= p(x, y, t) is
the pressure and Re is the Reynolds number of the flow.

Introducing the vorticity field with the z-component w=�v/�x−�u/�y , the momentum equa-
tions provide a vorticity transport equation:

1

Re
∇2w= �w

�t
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�w
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+v

�w
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(3)

A stream function is defined satisfying the continuity condition as

��

�x
=−v,

��

�y
=u (4)

which is connected to the vorticity w by a Poisson equation

∇2�=−w (5)

3. METHOD OF SOLUTION

The Navier–Stokes equations are coupled in terms of vorticity and stream function as shown in
Equations (3) and (5). These coupled nonlinear equations can be solved iteratively. In the solution
procedure, first the Poisson equation (5) is solved for the stream function with an initial vorticity
estimate by using the DRBEM. After obtaining the stream function values for both boundary
and interior nodal points, the x and y derivatives of stream function are found by approximating
the stream function with a radial basis function. When we insert these derivative values in the
vorticity transport equation (3), it turns out to be a linear transient convection–diffusion equation
with constant coefficients. Then, the combination of the DRBEM in spatial domain and DQM in
time domain is used for the solution.

3.1. Application of DRBEM to vorticity transport and stream function equations

The DRBEM is employed to transform the vorticity transport equation (3) and the stream function
equation (5) into boundary integral equations by using the fundamental solution to the Laplace
equation and treating the terms on the right-hand sides of these equations as the nonhomogeneity.
Thus, Equations (3) and (5) are weighted through the domain � of the problem as in [28], by the
fundamental solution u∗ of Laplace equation in two dimensions. Then by using Green’s second
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identity, we have

1
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where subscript i denotes the source point, q∗ =�u∗/�n and � is the boundary of the domain �.
The constant ci =�i/2� with the internal angle �i at the source point i .

In order to obtain boundary integrals that are equivalent to the domain integrals in Equations (6)
and (7), a dual reciprocity approximation is introduced. The basic idea is to expand the terms
described as nonhomogeneity in the form

�w
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and

−w=
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�̃ j f j (x, y) (9)

for Equations (6) and (7), respectively. The above series involve a set of radial basis (coordinate)
functions f j (x, y) that are dependent only on geometry and they are linked with the particular
solutions û j to the equation ∇2û j = f j . The unknown coefficients � j are time dependent whereas
�̃ j are undetermined constants. The numbers of boundary and selected internal nodes are denoted
by N and L , respectively. Then, the application of the DRBEM leads to the following boundary
integral equations:
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where q̂ j =�û j/�n.
When constant elements are used for the approximation of �, w and their normal derivatives

on the boundary, the matrix–vector forms of the resulting DRBEM formulation of the vorticity
transport and stream function equations are obtained, respectively, as

1
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)
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and
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��
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where G and H are the square matrices whose coefficients are calculated by integrating u∗ and
q∗ over each boundary element. Thus, the entries of these matrices are given by

Hi j =ci�i j + 1
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∫
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�
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where r is the modulus of the distance vector from point i to element j , �i j is the Kronecker delta
function and � j is the boundary of the j th element. Matrices Û and Q̂ are constructed by taking
each of the vectors û j and q̂ j as columns, respectively.

By evaluating expressions (8) and (9) at all boundary nodes and inverting, the matrix–vector
equations (12) and (13) will have the form

1

Re

(
Hw−G

�w

�n

)
=(HÛ−GQ̂)F−1

{
�w

�t
+u

�w

�x
+v
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(14)

and

H�−G
��

�n
=(HÛ−GQ̂)F−1{−w} (15)

where (N+L)×(N+L) matrix F contains the coordinate functions f j ’s as columns.
Observe that the resulting DRBEM discretization produces nonlinear and coupled equations in

vorticity and stream function because of relationship (4). Thus, an iterative procedure is necessary
to solve them. The iterative procedure proposed here reduces Equation (14) to a set of ordinary
differential equations in time and Equation (15) to a system of linear algebraic equations in each
iteration.

We shall now describe the iterative procedure:

(i) Start with some initial approximations for the vorticity, namely w0.
(ii) Solve the stream function equation appearing in Equation (15) with w=w0. By this initial

vorticity guess the right-hand side of Equation (15) produces a constant vector. Moreover,
by the insertion of the boundary conditions for the stream function and its normal derivative
and by the rearrangement of Equation (15), we end up with a linear system of equations

Ã�̃= b̃ (16)

where Ã is the coefficient matrix of size (N+L)×(N+L), b̃ is a known vector and �̃ is
the solution vector containing N boundary values of � and ��/�n plus L interior values
of �.

(iii) Once the values of stream functions are obtained both on the boundary and inside of the
domain, the x and y derivatives of stream function can also be approximated by using the
same coordinate functions f j (x, y), i.e.

�=
N+L∑
j=1

�̃ j f j (x, y) (17)
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where �̃ j are unknown coefficients and this equation can be rewritten as

�=F �̃ (18)

Differentiating Equation (18), we have

��

�x
= �F

�x
F−1�,

��

�y
= �F

�y
F−1� (19)

since �̃ j =F−1�. Thus, the velocity components u and v given in Equation (4) in terms
of the derivatives of stream function at the required nodal points can be found by using
Equation (19). These obtained values of u and v will be used as constants in the solution
to vorticity transport equation.

(iv) Solve the vorticity transport equation (14). Since Equation (14) involves �w/�t , the vorticity
is approximated by using the same coordinate function f j (x, y) as

w=
N+L∑
j=1

� j (t) f j (x, y) (20)

where � j (t)’s are time-dependent unknown coefficients and the system w=F� leads to
the convective terms of the vorticity

�w

�x
= �F

�x
F−1w,

�w

�y
= �F

�y
F−1w (21)

Substituting convection terms back into Equation (14), one can obtain the system of ordinary
differential equations

Cẇ+ H̃w−G̃
�w

�n
=0 (22)

where matrices C , H̃ and G̃ are given by

C = −(HÛ−GQ̂)F−1

H̃ = 1

Re
H+CR1+CR2 (23)

G̃ = 1

Re
G

and

R1=u
�F
�x

F−1, R2=v
�F
�y

F−1 (24)

Now, from Equation (22), the standard form of the first-order initial value problem

ẇ+Bw=D
�w

�n
(25)

is obtained, in which B=C−1 H̃ , D=C−1G̃ and superscript dot denotes the time derivative.
Then, system (25) is integrated in time using a DQM, which enables us to obtain vorticity
values at any required time level.
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(v) Repeat steps (ii)–(iv) either until the steady state or a required time level is reached. In our
calculations we terminate the procedure when the difference between the values of � and
w at two successive iterates in L∞ norm is less than a preassigned tolerance.

3.2. Application of the DQM to vorticity transport equation

The DQM approximates the derivative of a smooth function at a grid point by a linear weighted
summation of all the functional values in the whole computational domain [25]. In this study DQM
is employed to discretize the time derivative of w in Equation (25) [26, 27].

The DQM analogue of the first-order derivative of a function f (t) at a grid point ti can be
expressed as

d f (t)

dt

∣∣∣∣
ti

=
M∑
j=1

a j (ti ) f (t j ) (26)

where i=1,2, . . . ,M is the number of grid points ti in the time direction and a j (ti ) are the weighting
coefficients for derivative approximations of f (t) to be determined by the polynomial-based DQM
[25, 29].

The weighting coefficients for the first-order derivative are given as

ai j = M (1)(ti )

(ti − t j )M (1)(t j )
, i �= j, i, j =1,2, . . . ,M (27)

aii =−
M∑

j=1, j �=i
a j (ti ) (28)

where

M (1)(t j )=
M∏

k=1,k �= j
(t j − tk) (29)

and

ai j =a j (ti )

By using the DQM time approximation, the first-order initial value problem (25) becomes

M∑
j=1

ai jW j +BWi =Dqi , i=1,2, . . . ,M (30)

where the vectors Wi and qi are in fact the w and �w/�n vectors, respectively, at the i th time
level and they are given as

Wi = {w1i ,w2i , . . . ,wNi ,w(N+1)i , . . . ,w(N+L)i }

qi =
{

�w

�n

∣∣∣∣
1i

,
�w

�n

∣∣∣∣
2i

, . . . ,
�w

�n

∣∣∣∣
Ni

,0, . . . ,0

} (31)

in which w j i =w j (ti ) and �w/�n| j i =�w/�n| j (ti ).
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Equation (30) gives a system of linear equations for each time level ti , which can be denoted
in a matrix–vector form

SW̃ = D̃q̃ (32)

where

S= A+ B̃ (33)

Matrices A, B̃ and D̃ are expressed as

A=

⎡
⎢⎢⎢⎢⎢⎣

ā11 ā12 . . . ā1M

ā21 ā22 . . . ā2M

...

āM1 āM2 . . . āMM

⎤
⎥⎥⎥⎥⎥⎦

(34)

with (N+L)×(N+L) submatrices āi j defined as

āi j =ai j I

and
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⎡
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B
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⎡
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D

D

. . .

D

⎤
⎥⎥⎥⎥⎥⎦

(35)

The sizes of matrices S, B̃, A and D̃ are (N+L)M×(N+L)M and the identity matrix I is of
size (N+L)×(N+L).

The (N+L)M×1 vectors W̃ and q̄ are defined as

W̃ ={w11,w21, . . . ,w(N+L)1;w12,w22, . . . ,w(N+L)2; . . . ;w1M ,w2M , . . . ,w(N+L)M } (36)

q̄ =
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,
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, . . . ,
�w
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,0, . . . ,0; �w
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, . . . ,
�w

�n
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,0, . . . ,0;

. . . ; �w

�n

∣∣∣∣
1M

, . . . ,
�w

�n

∣∣∣∣
NM

,0, . . . ,0

}
(37)

In the linear system (32) boundary conditions (some of W̃ and some of q̃ nodal specified values)
are inserted by interchanging the negative of corresponding columns and reordering the solution
vector in terms of unknown W̃ and q̃ nodal values. When the initial condition is also inserted at the
interior plus boundary nodes for the initial time level, system (32) finally becomes a rectangular
system since known initial W̃ values are passed to the right-hand side leaving less number of
unknowns than the number of equations.

The resulting reordered form of system (32) is given as

S̃X =b (38)
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where the size of matrix S̃ is ((N+L)M−L)×((N+L)M−L). Vectors X and b have the size
((N+L)M−L)×1 if the boundary condition is of Dirichlet type. For Neumann type of boundary
conditions, the sizes of S̃, X and b are appropriately arranged. Vector X contains the unknown
values of w and its normal derivative for each nodal points at all the required time levels, whereas
vector b contains all boundary plus initial information. Therefore, once system (38) is solved, one
can obtain the solution for vorticity on the entire domain at any time level at one stroke and then
iteratively at steady state.

4. NUMERICAL RESULTS

We consider three test problems. As a first example, the Navier–Stokes equation in a square domain
(0�x, y�1) when an external force is present is solved to see the accuracy and efficiency of
our numerical method since the exact solution is available. The second example is the lid-driven
cavity problem for which the fluid in the cavity is driven by the motion of one of the walls with a
constant velocity. In the DRBEM discretization for the spatial domains, we use a suitable number
of constant boundary elements and some interior nodes for presenting the solution in terms of
graphics. For the time domain GCL points are used in the differential quadrature discretization.
Since the DQM is unconditionally stable we are allowed to use arbitrarily large time step size
in each time block. Thus, the number of time discretization points, M , can be quite small. A
suitable number of the internal points, L , is taken to depict the behaviour of the solution. The
two-dimensional natural convection problem in a square cavity is also solved as a third application
with the proposed iterative procedure. Now, the Navier–Stokes equations include the buoyancy
force generated as a result of fluid density difference caused by the temperature difference. The
buoyancy term is computed based on the Boussinesq approximation.

4.1. Navier–Stokes equations in a square

The aim of this first problem is to verify the accuracy of the proposed method. The equations now
include a force term f as

�w

�t
+u

�w

�x
+v

�w

�y
= 1

Re
∇2w+ f

∇2� = w

(39)

with no slip boundary conditions (i.e. �|� =0) and ��/�n|� =0, where � is the boundary of the
square domain 0�x, y�1. Here the velocity field is given by u=−��/�y and v=��/�x . The
vorticity boundary conditions are taken from the exact solution

� = −sin t sin2�x sin2�y

w = −�2 sin t (cos2�x+cos2�y−2cos2�x cos2�y)

u = �sin t sin2�y sin2�x

v = −�sin t sin2�x sin2�y

(40)
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and the force is given by

f = −�2 cos t (cos2�x+cos2�y−2cos2�x cos2�y)

+�4 sin2 t sin2�x sin2�y(cos2�x−cos2�y)

− 4

Re
�4 sin t (cos2�x+cos2�y−4cos2�x cos2�y) (41)

In the DRBEM discretization we use N constant boundary elements ranging from N =64 to 80
and M=4 GCL points are taken in the time discretization for DQM. In Figures 1–3 the agreement
of our numerical solutions with the exact solution is depicted for both the stream function and the
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Figure 1. Stream function and vorticity contours for Re=500, N =64, M=4, T =10.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Stream function

 –0.44

 –0.35

– 0
.2

 –0.1

 –0.01

Numeric
Exact

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Vorticity

18

12
6

0
 –3

 –6
 –9

Numeric
Exact

Figure 2. Stream function and vorticity contours for Re=1500, N =72, M=4, T =0.5.
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Figure 3. Stream function and vorticity contours for Re=2000, N =80, M=4, T =1.

vorticity in terms of contours at several time levels for the Reynolds number Re=500, 1500 and
2000, respectively. It is noted that this viscous flow problem has the particularity of having a flow
pattern, which is independent of the Reynolds number.

4.2. Lid-driven cavity flow

The second problem is the classical lid-driven cavity flow in a square domain �=[0,1]×[0,1]
containing a recirculating flow induced by the motion of the lid.

We consider the equations governing the transient, laminar flow of a viscous incompressible
fluid in a square cavity. The fluid in the cavity is driven by the motion of the upper wall, which is
assumed to move with a constant velocity u=−1. The governing equations are the same with the
previous problem where the load f =0. The velocities and the stream function are prescribed on
the boundaries of the square cavity (Figure 4) bounded by three motionless walls and by a fourth
wall moving in its own plane.

These boundary conditions are used for the solution to the stream function. In order to solve
the vorticity transport equation, vorticity boundary conditions are required and these values can
be approximated from the discretized stream function equation using the relation

wi, j =−∇2�i, j (42)

The boundary approximation for w is obtained on any boundary by taking

�nn|0=�0�0+�1�p+�2�q +�3�n|0 (43)

where subscripts 0, p and q indicate � values on the boundary mesh point, ph and qh distances
away from the boundary, respectively. The expansion of �p and �q into Taylor series about the
mesh point numbered 0 and reorganization of terms gives

�nn|0=�0(�0+�1+�2)+�n|0(ph�1+qh�2+�3)+�nn|0
(
p2h2

2
�1+ q2h2

2
�2

)
+·· · (44)
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Figure 4. Boundary conditions for the lid-driven cavity problem.

In this latter equality, by setting the corresponding terms equal we obtain the solution

�0= −2(p3−q3)

h2 p2q2(p−q)
, �1= −2q

h2 p2(p−q)
, �2= −2p

h2q2(p−q)
, �3= −2(p+q)

hpq
(45)

where p and q are positive integers and p �=q . Thus, the boundary approximation becomes

w0=−h−2
[
− 2(p3−q3)

p2q2(p−q)
�0− 2q

p2(p−q)
�p+ 2p

q2(p−q)
�q − 2h(p+q)

pq
�n|0

]
(46)

which involves the unknown � values at distances ph and qh along the normal and has a truncation
error of order h2. Since boundary values of �, �x , �y for the cavity flow are given, the boundary
values of w can be obtained from Equation (46).

In the computations p=2 and q=1 are taken. We use N =56, 88 and 112 constant boundary
elements and M=3, 2 and 2 time discretization points in each time block for the values of Reynolds
number Re=100, 500 and 1000, respectively. The steady-state stream function and the vorticity
values are obtained after 59, 116 and 200 iterations with an accuracy of 10−4 for the Reynolds
number Re=100, 500 and 1000 and these results are presented, respectively, in the Figures 5–7.

At a Reynolds number of around 100, the streamline primary vortex moves towards the left-hand
wall. At Reynolds numbers of 500 and 1000 the primary vortex starts to move towards the cavity
centre. As the Reynolds number increases up to 500, the recirculations appear at the lower corners
for the streamlines. At Re=1000 the recirculation close to the upper right corner shows up since
the fluid movement is affected by the velocity of the lid that moves to the left. As Re increases
the vorticity contours move away from the cavity centre towards the cavity walls indicating that
strong vorticity gradients develop on the lid and the cavity walls (especially x=0 wall). The fluid
begins to rotate with a constant angular velocity. These behaviours are in good agreement with
the behaviours observed in [15, 16, 20]. Figures 8 and 9 show the velocity profiles for u along
the vertical line (x=0.5) and v along the horizontal line (y=0.5) passing through the geometric
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Figure 5. Stream function and vorticity contours for Re=100, N =56, M=3.
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Figure 6. Stream function and vorticity contours for Re=500, N =88, M=2.

centre of the cavity for the values of Reynolds number Re=100 and 400. The numerical results
obtained by the coupling of the DRBEM and DQM are compared with the results of Ghia [30] (by
taking u=1 on the upper lid as is done in [30]) and it is observed that they are in good agreement.

The numbers of the boundary elements N and the time points M for one time block are so
small that the whole procedure is still more economical than the FDM, which has to use very small
time increment for stability. Although there is no certain relationship between N , M and L on the
accuracy and the convergence of the numerical solution, one should be careful about the choice of
N , M and L for not having an oversized final linear system of equations for the solution. Thus,
the application of the present method to the three-dimensional problems is not recommended since
one has to deal with much larger matrices.
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4.3. Natural convection in a square cavity

Natural convection in a differentially heated enclosure, which is a popular problem as testing any
proposed numerical scheme, is added here since the governing equations can be treated easily
with the proposed method in this paper. The vorticity transport equation is coupled to the energy
equation through the buoyancy force RaPr�T /�x and the energy equation is exactly in the same
form (convection terms multipliers are the velocity components) of vorticity transport equation for
the Navier–Stokes equations.
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The equations are given as

∇2� = w

�w

�t
+u

�w

�x
+v

�w

�y
= Pr∇2w+RaPr

�T
�x

(47)

�T
�t

+u
�T
�x

+v
�T
�y

= ∇2T

where T , Pr and Ra are the temperature, Prandtl number and Rayleigh number, respectively.
Equation (47) is subjected to the initial condition

w=T =0 (48)

The no-slip boundary conditions of the velocity at boundary walls are assumed. Temperature has
Dirichlet-type boundary conditions as 1 and 0 at the left and right walls of the cavity [0,1]×[0,1],
whereas adiabatic conditions �T /�y=0 are imposed on the top and bottom. The proposed coupled
numerical algorithm is applied to determine the stream function, vorticity and temperature variations
with the given initial values iteratively.

In Figure 10 we present streamlines, vorticity and temperature contours at steady state for
Ra=103, 104 and 105 with the constant boundary elements N =48, 64 and 100, respectively. As
Rayleigh number increases, the boundary layer formation starts for all the variables stream function,
vorticity and isotherms near the walls x=0 and 1. It is also observed from isotherms that the
temperature contours undergo an inversion at the central region of the cavity. The primary vortex
of the streamlines tends to separate and form two vortices through the corners (0,1) and (1,0)
as the Rayleigh number increases. These behaviours are in good agreement with the previously

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:215–234
DOI: 10.1002/fld



232 C. BOZKAYA AND M. TEZER-SEZGIN

0 0.5 1
0

0.5

1

Stream function

 –1
.1

 –1
 –0.7– 0.4

 –0.1

0 0.5 1
0

0.5

1

Vorticity

 –24 –16
 –

8
0

8
16

0 0.5 1
0

0.5

1

Temperature

0.
9

0.
7

0.
5

0.
3

0.
1

0 0.5 1
0

0.5

1

 –5

 –4

 –2.5

 –1
 –0.2

0 0.5 1
0

0.5

1

 –70

0
70

0 0.5 1
0

0.5

1

0.
9

0.7

0.5

0.3

0.
1

0 0.5 1
0

0.5

1

 –9.5

 –7.5

– 4.5
 –2.5

 –0.5

0 0.5 1
0

0.5

1

– 2
00

 –4
00

0

200

0 0.5 1
0

0.5

1

0.
9

0.7

0.5

0.3

0.
1

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)
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Table I. Numerical results of natural convection for Ra=103,104 and 105.

Ra=103 Ra=104 Ra=105

Nu0 Nu Nu0 Nu Nu0 Nu

DRBEM&DQM 1.118 1.105 2.274 2.352 4.376 4.369
Davis[31] 1.117 1.118 2.238 2.243 4.509 4.519

published results [21–23]. The obtained results indicate that the present method is capable of
handling quite a high Rayleigh number without difficulties and with a considerable small number
of mesh points.
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In Table I, the values of the Nusselt number on the vertical boundary at x=0, Nu0, and the
average Nusselt number throughout the cavity, Nu, obtained by the present study are compared
with the benchmark solution given by De Vahl Davis [31] for Ra=103,104 and 105. As Rayleigh
number increases, we need to take more boundary elements to obtain better accuracy. Although
there are some differences in the values in Table I, the flow patterns obtained by the coupling of
the DRBEM and DQM show no distinguishable difference.

5. CONCLUSION

The transient two-dimensional Navier–Stokes equations in stream function–vorticity form are
solved using the DRBEM in spatial and DQM in time domains. The DQM discretization in time
direction results in a system of linear algebraic equations, which gives the solution vector for
vorticity at the required time levels at one stroke. The vorticity boundary conditions are computed
using a finite difference formula, which uses both the boundary and the interior stream function
values. The proposed numerical algorithm is also applicable for the solution to natural convection
in a square cavity. It gives quite good accuracy with a considerable small number of mesh points
in both space and time directions.
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